
1. Introduction

The simplest decoupling scheme is the continuous wave (cw) irradiation at a single decoupling frequency. Though effective at the decoupling frequency, cw decoupling can not cover a wide frequency range. It is often desirable to provide decoupling that is effective over the whole range of a spectrum. Demonstrated herein is the WALTZ-16 sequence for this purpose,

where the basic element, R equals $90^{\circ}_{x}180^{\circ}_{-x}270^{\circ}_{x}$. If all pulses are expressed as multiples 90° , R equals $1\bar{2}3$ (hence the name WALTZ). In this example, the WALTZ-16 sequence is implemented as a subsequence. We demonstrate how to use the Asynchronous function to merge a subsequence into the main sequence. It significantly simplifies the pulse editing and appearance of a sequence is more straight forward.

2. Pulse sequence

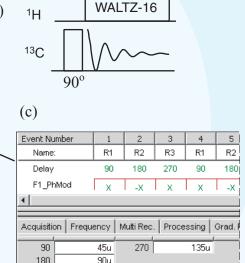


Fig. 1. (a) The pulse sequence with a single ¹³C excitation pulse and ¹H decoupling during acquisition. (b) The sequence in the NTNMR sequence editor. F1 is the ¹H and F2 is the ¹³C channel. (c) The WALTZ -16 sequence in the NTNMR sequence editor (partial view). It is loaded into the main sequence (b) by the Asynchronous function.

3. Experiment

Sample: Ethanol

Spectrometer: 7 Tesla Magnet with Tecmag HF3 discovery

Probe: Nalorac D300-5 OWB 5mm ¹H/¹³C Switchable probe

¹H decoupling field: 5.6 kHz ($90^{\circ} = 45 \,\mu s \, @ 800 \,\text{mW}$)

 13 C 90° pulse: 5 µs (@ 250 W)

3. Experiment (continued)

 $SW +/-: \pm 6.5kHz$

Last Delay: 2s Scans 1D: 8

Set up the proton WALTZ-16 sequence (Fig. 1c):

Calibrate the ¹H 90° pulse width. After that, set the resulting power level in the lines "F1_Ampl" and "F1_Attn" of the main sequence (Fig. 1b). In a new NTNMR sequence editor widow, set the pulse widths in the "Delay" line, and set the phases in the "F1_Mod" line according to Eq.1. Finally, save the sequence as a sequence file, e.g., WALTZ-16.tps, using the "Save Sequence As..." command.

Load the proton WALTZ-16 sequence into the main sequence:

On the "F1_PhMod" of the main sequence editor window (Fig.2b), left-click on the event during which the WALTZ-16 sequence should start. A pop-up menu appears. Select the option "Add Asynchronous Start" and then select WALTZ-16.tps in the File Open dialog box. To define the end of the decoupling, left-click the cell where the WALTZ sequence shall stop, and select "Add Asynchronous Stop" in the pop-up menu.

4. Results

Figure 2 shows the ¹³C C₂H₅OH spectra with varies ¹H decoupling schemes for comparision. With no ¹H decoupling (Spectrum 1), the spectrum shows a quartet for CH₃ and a triplet for CH₂(1). With cw decoupling and the frequency set to H_a (Spectrum 2), or H_b (Spectrum 3), the respective other carbon is only partially decoupled. Using the WALTZ-16 sequence and the frequency set to ¹H_a (Spectrum 4), or ¹H_b (Spectrum 5), the spectra indicate that WALTZ provides sufficient proton decoupling for both lines at either decoupling frequency.

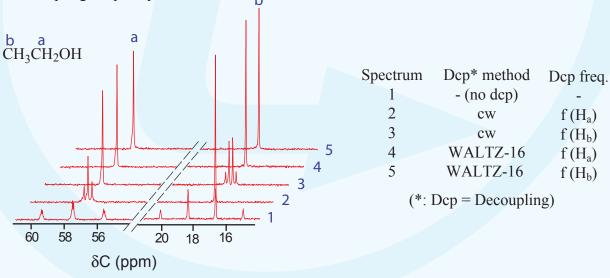


Fig. 2. The ¹³C C₂H₅OH spectra with varies proton decoupling schemes acquired with the sequence shown in Fig. 1.

5. References

- 1. A. J. Shaka, J. Keeler and R. Freeman, J. Magn. Reson. 1983, 53, 313.
- 2. E. D. Becker, "High Resolution NMR", 3rd Ed. Academic Press, 2000, p242.

QWZ 10/09/2002

