T_{1p} Measurements

(1)

1. Introduction

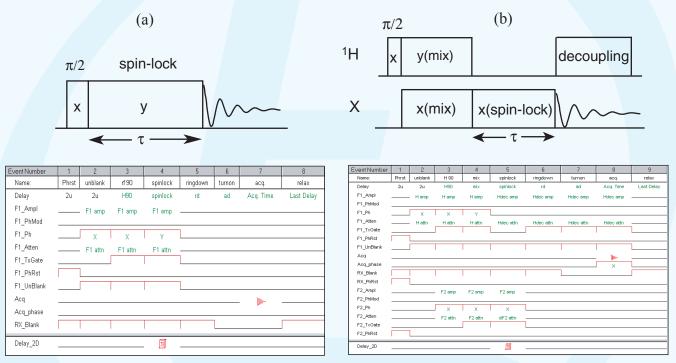
 $T_{1\rho}$ is the spin-lattice relaxation time in the rotating frame. The NMR signal intensity (M) is measured as a function of the spin-lock duration τ . $T_{1\rho}$ is obtained by fitting the equation:

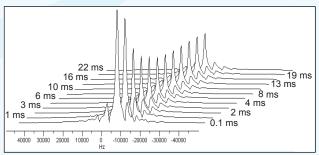
$$\mathbf{M} = \mathbf{M}_{\infty} + (\mathbf{M}_{0} - \mathbf{M}_{\infty}) \mathbf{e}^{-\tau/T_{1\rho}},$$

where M_0 is the initial magnetization, and M_{∞} is the magnetization when the spin system and the lattice reach a quasi-equilibrium during the spin-lock ($M_{\infty} = 0$ at resonance).

2. Pulse sequence

Figure 1 shows the measurement of $T_{1\rho}$ in two situations: (a) Single-resonance: nuclei are excited by a 90° pulse and then spin-locked for a time τ ; (b) Double-resonance: a rare spin is excited by cross-polarization from protons and then spin-locked for a time τ .




Fig. 1 Sequences for measuring $T_{1\rho}$ in the NTNMR sequence editor.

3. Experiments and Results

 $T_{1\rho}$ is measured by a series of experiments with different spin-lock durations, i.e. as a 2D-experiment, with a 2D delay table containing a set of spin-lock durations.

Sample 1: Hexamethyl Benzene

Fig. 2. A stacked plot of proton spectra of hexamethyl benzene at different spin-lock durations. The sample was spun at 5.1 kHz. The spectra were obtained with the sequence shown in Fig. 1a. The 90° pulse width is is 2.3 μ s. The spin-lock power level is 108 kHz.

tecmag_

TECHNOLOGY FOR MAGNETIC RESONANCE

T₁_p Measurements

GENERAL APPLICATION

Sample 2: 2-13C, 15N-glycine

Fig. 3. An array of ¹³C spectra of 2^{-13} C, ¹⁵N-glycine with different spin-lock durations. The sample was spun at 6.8 kHz. The spectra were obtained with the sequence shown in Fig. 1b. The 90° pulse width is 3 µs and the spinlock power level is 56 kHz.

T₁_p Calculation:

- 1. Phase the spectra.
- 2. Put the cursor on the desired peak for $T_{1\rho}$ calculation.
- 3. Open the "Data Analysis" window (Fig. 4a) from the "Tools" menu.
- 4. Set the "X-values" to τ -table, and the "Y-values" to "Real" and "Intensity".
- 5. Click "Fit|Add" to open a dialog window for entering the mathematical expression (Fig. 4b). Enter Eq.1, set $M_{\infty} = [p1]$, $M_0 M_{\infty} = [p2]$, and $T_{1\rho} = [p3]$ together with their initial values. Click "OK" to exit the window.
- 6. Click the "Draw" button. The result will appear in the window as shown in Fig. 4a.

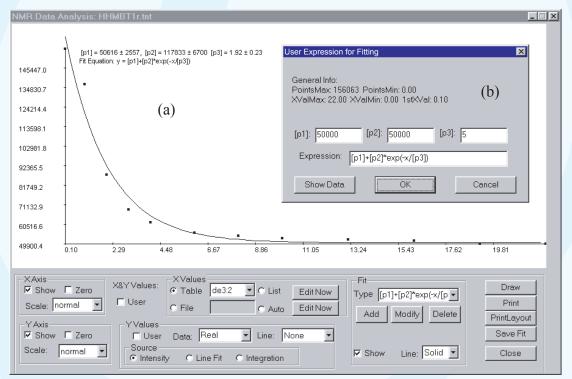
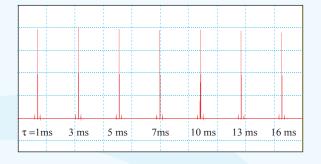


Fig. 4. a: $T_{1\rho}$ fitting for hexamethyl benzene in the "NTNMR Data Analysis" window. Fitting results: $T_{1\rho} = 1.92 \pm 0.23$ ms. b(insert): The dialog window for entering the desired mathematical expression and the initial values of fitting parameters.


4. References

Slichter, C.P., "Principles of Magnetic Resonance", Springer-Verlag, 1990, p.242 - 246.
Bovey, F.A. and Mirau, P.A., "NMR of Polymers", Academic Press, 1996, p. 81 - 83.

TECHNOLOGY FOR MAGNETIC RESONANCE

OWZ 04/08/2002

