
1. Introduction

TOtal Suppression of Spinning Sidebands (TOSS) is achieved by using a series of π pulses at carefully determined points in a rotor cycle, after excitation (initial $\pi/2$ pulse or CP).

2. Pulse sequence

^{*} All times are given after mixing pulse.

(b)

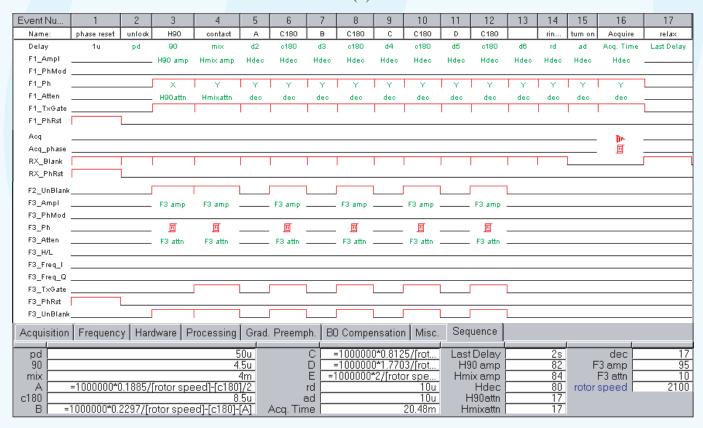


Fig. 1a: TOSS pulse sequence. b: Actual sequence in the NTNMR sequence editor. The delays between π pulses are calculated conveniently by means of mathematical expressions in dashboard (Fig.1b, lower section). Update occurs automatically upon entry of the rotor speed and π pulse width.

3. Experiment

Sample: Hexamethylbenzene

 1 H_90°: 4.5 μs Mixing rf field: 55 kHz 13 C_180°: 8.5 μs 1 H decoupling: 55 kHz Rotor speed: 2.1kHz

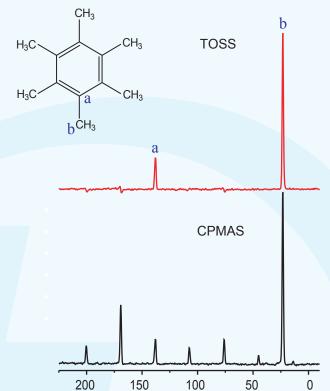


Fig. 2 Top: TOSS spectrum of hexamethyl benzene. Bottom: CPMAS spectrum.

13C Chemical Shift (ppm)

4. Results

The CPMAS spectrum (Fig. 2, bottom) shows the methyl carbon peak and benzene ring carbon peak with sidebands. The corresponding TOSS spectrum (Fig. 2, top) exhibits no sidebands.

5. Reference

(1) Dixon, W. T., Schaefer, J., Sefcik, M. D., Stejskal, E. O., and McKay, R. A. "Total Suppression of Spinning Sidebands in CPMAS C-13 NMR" *J. Magn. Reson.* **49**, 341-345, 1982.

QWZ 04/08/2002